

Mark Scheme (Results)

Summer 2013

AEA Mathematics (9801/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UA036372
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question	Scheme	Marks	Notes
1. (a)	$\frac{n(n-1)}{2!} \left(\frac{12n}{5}\right)^2 = \frac{n(n-1)(n-2)}{3!} \left(\frac{12n}{5}\right)^3$	M1	For attempting suitable equation. Ignore xs but must use binomial.
	$3 \times 5 = n(n-2) \times 12$ or $4n^2 - 8n - 5 = 0$ (o.e.)	A1	Correct 3TQ in <i>n</i> May be other factors
	(2n+1)(2n-5) = 0	dM1	Dep on 1 st M1
	$n=-\frac{1}{2},\frac{5}{2}$	A1	Both & no others unless revoked later
(b)	$n = -\frac{1}{2}$ in $\left \frac{12nx}{5} \right < 1$ gives $ x < \frac{5}{6}$ and $n = \frac{5}{2}$ in $\left \frac{12nx}{5} \right $ gives $ x < \frac{1}{6}$	(4) M1	Attempt both cases Just check $n = -\frac{1}{2}$ SC B1
	So should choose $n = -\frac{1}{2}$	A1 (2)	
	May sub $x = \frac{1}{2}$ and get $ n < \frac{5}{6}$ for M1 and A1 for stating $n = -\frac{1}{2}$	(6)	

Question	Scheme	Marks	Notes
2. (a)	$\sin(90 - x) = \sin 90\cos x - \cos 90\sin x = 1.\cos x - 0.\sin x = \cos x$	B1	One intermediate line
		(1)	
(b)	$2\sin(\theta+17)\cos(\theta+17) = \cos(\theta+8) \Rightarrow \sin[2(\theta+17)] = \cos(\theta+8)$	M1	Use of $\sin 2A = \dots$
	$2\theta + 34 = 90 - (\theta + 8)$	dM1	Use of (a) – not trig θ
	$3\theta = 82 - 34 = 48$ so $\theta = 16$	A1	
	$2\theta + 34 = 180 - [90 - (\theta + 8)] \underline{\text{or}} 2\theta + 34 = [90 - (\theta + 8)] + 360$	M1	$2^{\rm nd}$ eqn for θ
	$\theta = 98 - 34 \text{or} \qquad \qquad \theta = 64$	A1	
	$3\theta = 48 + 460 \qquad \qquad \theta = 136$		
	$\overline{\theta} = 256$	A1 (7)	
NB	$\sin(2\theta + 34) - \sin(82 - \theta)$ gives $2\cos[(\theta + 116)/2]\sin[(3\theta - 48)/2]$	(8)	
	Then: $\theta/2 + 58 = 90$ gets M1 and e.g. $3\theta/2 - 24 = 0$ gets M1		

Question	Scheme	Marks	Notes
3. (a)	$-7 + 2\lambda = 7 + 10\mu$ and $1 - 3\lambda = -6 - \mu$ (o.e.)	M1	Form suitable eqns
	$\Rightarrow 14\mu = -14$ $\mu = -1$, $(\lambda = 2)$	M1A1	M1 for eqn in 1 var
	$\Rightarrow 14 \mu = -14$ Check in 3 rd equation: $7 = p - 4\mu$ $\frac{\mu = -1, (\lambda = 2)}{p = 3}$	A1	Check in 3^{rd} , $p =$
	Position vector of C is $\begin{pmatrix} -3 \\ 7 \\ -5 \end{pmatrix}$	A1 (5)	Accept as coordinates
(b)	$\mu = -2 \Rightarrow 7 - 2 \times 10 = -13$, $3 - 2 \times -4 = 11$ and $-6 - 2 \times -1 = -4$	B1 (1)	See $\mu = -2 \& ans$
(c)	$\overrightarrow{CA} = \begin{pmatrix} -4 \\ 0 \\ 6 \end{pmatrix}$ and $\overrightarrow{CB} = \begin{pmatrix} -10 \\ 4 \\ 1 \end{pmatrix}$ giving $\overrightarrow{CA} \bullet \overrightarrow{CB} = 40 + 0 + 6 = 46$	M1	Attempts a suitable scalar product. Allow 1 sign slip Allow ±
	$\cos(ACB) = \frac{46}{\sqrt{52}\sqrt{117}}, = \frac{46}{2\sqrt{13}\times3\sqrt{13}} = \frac{23}{39}$ (o.e.)	dM1 A1	Allow ± A1 for an exact fraction (no surds)
(d)	Form Rhombus. Let $\overrightarrow{CM} = \frac{1}{2}\overrightarrow{CA}$ then $\overrightarrow{CD} = \overrightarrow{CB} + 3\overrightarrow{CM}$	M1	Attempt suitable rhombus or unit vectors
	$\overline{CD} = \begin{pmatrix} -16 \\ 4 \\ 10 \end{pmatrix} \underline{\text{or}} \overline{OD} = \begin{pmatrix} -19 \\ 11 \\ 5 \end{pmatrix}$	A1	
	$\mathbf{r} = \overrightarrow{OC} + t\overrightarrow{CD}, \qquad \mathbf{r} = \begin{pmatrix} -3\\7\\-5 \end{pmatrix} + t \begin{pmatrix} -8\\2\\5 \end{pmatrix} $ (o.e.)	dM1 A1 (4) (13)	Dep. On 1 st M1. For attempt equation of line

Question	Scheme	Marks	Notes
4. (a)	$a_1 = 1, \ a_2 = 3, \ a_3 = 7, \ a_4 = 15, \ a_5 = 31, \ a_6 = 63$	B1	Notes
(b)	Sub: $a_{r+1} = 2^{r+1} - 1$; $2a_r + 1 = \underline{2(2^r - 1) + 1} = 2^{r+1} - 1$	(1) B1cso	Correct demonstration in <i>r</i>
(c)	$\sum a_r = \sum 2^r - \sum 1 = \sum 2^r - n$		For $\sum 1 = n$
	$\sum 2^r = \frac{2(2^n - 1)}{2 - 1}$, therefore $\sum a_r = 2(2^n - 1) - n$ (o.e.)	M1 A1	Use of GP formula Any correct expres' $A1 \text{ needs} - n \text{ too.}$
(d)	$a_{r+1} = 2a_r + 1 \Rightarrow \underline{a_{r+1} > 2a_r} \rightarrow \frac{1}{a_{r+1}} < \frac{1}{2} \times \frac{1}{a_r}$	(3) B1cso	Or equiv in words
(e)	$\frac{1}{a_4} < \frac{\frac{1}{2}}{a_3}$ and $\frac{1}{a_5} < \frac{\frac{1}{2}}{a_4} < \frac{\left(\frac{1}{2}\right)^2}{a_3}$	(1) M1	Use of (d) to get any 2 inequality for 4 th and 5 th terms
	So: $\sum_{r=1}^{5} \frac{1}{a_r} < 1 + \frac{1}{3} + \frac{1}{7} + \frac{\left(\frac{1}{2}\right)^2 \text{ or } \frac{1}{4}}{7}$	A1cso (2)	All 3 inequalities & no incorrect work
(f)	Lower limit = $1 + \frac{1}{3} + \frac{1}{7} = \frac{31}{21}$	B1cso	
	Identify GP $a = \frac{1}{7}$, $r = \frac{1}{2}$	M1	Correct r or a
	Use $S_{\infty} = \frac{\frac{1}{7}}{1 - \frac{1}{2}} \left(= \frac{2}{7} \right)$	dM1 A1	Attempt sum r <1 Correct expression or sum
	Upper limit = $1 + \frac{1}{3} + \frac{2}{7} = \frac{34}{21}$	A1cso	
		(5) (13)	

Question	Scheme	Marks	Notes
5. (a)	Differentiate: $uv = v \int u dx + u \int v dx$	M1 A1	Attempt to diff Correct prod. rule
	\div uv leading to $1 = \frac{\int u dx}{u} + \frac{\int v dx}{v}$ (*)	A1cso (3)	
(b)	$\frac{\int v dx}{v} = \cos^2 x$	B1 (1)	S+ for $1 - c^2 = s^2$
(c)	Diff. $u \sin^2 x = \int u dx$ gives $u = \frac{du}{dx} \sin^2 x + u 2 \sin x \cos x$	M1	Multiply by u and differentiate Or quotient rule
	$\frac{du}{dx}\sin^2 x = u(1 - 2\sin x \cos x) \therefore \frac{1}{u}\frac{du}{dx} = \frac{1 - 2\sin x \cos x}{\sin^2 x}$	dM1 A1cso	Collect u terms
(d)	Separate variables: $\int \frac{1}{u} du = \int \left(\frac{1 - 2\sin x \cos x}{\sin^2 x} \right) dx$	(3) M1	Separation of vars. Condone missing integral signs.
	RHS $= \int (\csc^2 x - 2\cot x) dx$	M1	Prepares RHS
	Integrate: $\ln u = -\cot x, -2\ln \sin x + c$	A1,A1	$+c$ on 2^{nd} A1
	$\ln\left(u\sin^2x\right) = -\cot x (+c)$	M1	Collect ln terms or remove ln
	$u = Ae^{-\cot x} \csc^2 x$	A1cso	No incorrect work
(c)	$y = e^{\tan x} \Rightarrow \frac{dy}{dx} = e^{\tan x} \sec^2 x \text{ or } e^{\tan x} \frac{d}{dx} (\tan x)$	(6) M1	For differentiation
	Hence $v = Be^{\tan x} \sec^2 x$	A1 (2)	Condone <i>A</i> not <i>B</i> but S-
		(15)	

6. (a) S+ for area	$\left[f(x) - \lambda g(x)\right]^{2} = \left[f(x)\right]^{2} - 2\lambda f(x)g(x) + \lambda^{2} \left[g(x)\right]^{2}$		
S+ for area	$ \Gamma(x) - \lambda g(x) = \Gamma(x) - 2\lambda \Gamma(x)g(x) + \lambda g(x) $	M1	Attempt to multiply
comment	Integrate dx throughout with inequality	A1cso	No incorrect work
(b)	Treat as quadratic in λ and attempt to use discriminant Clear reason for use of $b^2 - 4ac \le 0$ (or < 0) e.g. "no real roots" Giving: $\left[\int f(x)g(x) dx\right]^2 \le \left[\int \left[f(x)\right]^2 dx\right] \times \left[\int \left[g(x)\right]^2 dx\right]$ (o.e.)	(2) M1 M1 A1cso	\triangle & identify a , b , c Reason for ≤ 0 Condone 4s
	$g(x) = (1+x^3)^{\frac{1}{2}} \text{ and } f(x) = 1$ Then $[E]^2 \le \left[\int (1+x^3) dx \right] \times \left[\int 1^2 dx \right]$ $\int_{-1}^{2} (1+x^3) dx = \left[x + \frac{x^4}{4} \right]_{-1}^{2} = ,(2+4) - (-1 + \frac{1}{4}) = \frac{27}{4}$	M1 M1, A1	Integration 6.75 (o.e.)
	So $E^2 \le \frac{81}{4}$ i.e. $E \le \frac{9}{2}$	A1cso (4)	h() and 5/4 payer
1	$\int x^{2} (1+x^{3})^{\frac{1}{4}} dx = \frac{4}{15} (1+x^{3})^{\frac{5}{4}}$ $\left\{ \left[\frac{4}{15} (1+x^{3})^{\frac{5}{4}} \right]_{-1}^{2} = \right\} \frac{4}{15} \left[(9)^{\frac{5}{4}} - 0 \right] = \frac{4}{15} \times 9\sqrt{3} = \frac{12\sqrt{3}}{5}$	M1 A1 A1cso	k() and 5/4 power All correct Must see one of the expr' between {} and the answer
	Let E = required integral. $f(x) = (1+x^3)^{\frac{1}{4}}$ and $g(x) = x^2$	B1	Suitable f and g
	Then $\left[(\mathbf{d}) \right]^2 \le E \times \int_{-1}^2 x^4 \mathrm{d}x$	M1	Suitable inequality for <i>E</i>
	$\int_{-1}^{2} x^4 dx = \left[\frac{x^5}{5} \right]_{-1}^{2} = \frac{32}{5} - \frac{1}{5} = \frac{33}{5}$	M1	Allow slip e.g $\frac{16}{5} - \frac{1}{5}$ or $\frac{32}{5} - \frac{1}{5}$
	So $\frac{144 \times 3}{25} \le E \times \frac{33}{5} \to E \ge \frac{144}{55}$	(4) (16)	

Awarding of S and T marks				
Questions	Marks			
2, 3, 4	S1	For a fully correct solution that is succinct or includes an S+ point		
5, 6, 7	S2	For a fully correct solution that is succinct and includes some S+ points		
5, 6, 7	S1	For a fully correct solution that is succinct but does not mention any S+ points		
5, 6, 7	S1	For a fully correct solution that is slightly laboured but includes an S+ point		
5, 6, 7	S1	For a score of n -1 but solution is otherwise succinct or contains an S+ point		
Maximum S score is 6				
ALL	T1	For at least half marks on all questions		

Question	Scheme	Marks	Notes
7. (a)	$f'(x) = \frac{1}{3} - 12x^{-2}$	M1	Some correct diff
	$f'(x) = 0 \Rightarrow x^2 = 36$	M1	f'(x) =0 to give x^2 =
	So A (6, 4) and B (-6, -4) [1 st A1 for \pm 6 or (6, 4)]	A1A1	2 nd A1 is cso
(b)	$k = 6$ (Allow $k = \pm 6$)	(4) B1ft (1)	
(c)	Grad of normal $=\frac{1}{3}$, so gradient of tangent must be -3	B1M1	M1 for perp. rule
S+ for B1 comment	So $-3 = \frac{1}{3} - 12x^{-2}$ $\left[f'(x) = -3 \text{ or } \frac{-1}{f'(x)} = \frac{1}{3} \right]$	dM1	Form a suitable eqn using their $f'(x)$
	$x^2 = \frac{36}{10}$ so $(\alpha =) \frac{6}{\sqrt{10}}$ or $\frac{3}{5}\sqrt{10}$ or $3\sqrt{\frac{2}{5}}$	dM1 A1 (5)	Solving suitable eqn $p\sqrt{q}$ where p or q is an integer
(d)	y coord: $\beta = \frac{\sqrt{10}}{5} + \frac{12\sqrt{10}}{6} = 2.2\sqrt{10} \text{ or } \frac{11}{5}\sqrt{10}$	M1	Attempt y coord
	Equation of normal is: $y - \beta = \frac{1}{3}(x - \alpha)$	M1	ft their α and β Must be values and $m = \frac{1}{3}$
	i.e. $y = \frac{1}{3}x + 2\sqrt{10}$ (o.e.)	A1	
(e)	Shape	B1 (3)	Both branches
	(6, 4); (-6, 4) <u>Asymptotes</u>	B1ft	Follow through their <i>A</i> and <i>B</i>
	$x = 0, y = \pm \frac{1}{3}x$	B1B1	-1 each omission $y = \left \frac{x}{3} \right $ is OK
(P)		(4)	Attompt line -
(f) S+ for	If intersect then line = curve gives: $(3m-1)x^2 + 3x - 36 = 0$	M1	Attempt line = $\text{curve } \rightarrow 3\text{TQ}$
comment	Disciminant < 0 gives: $9 < 4 \times (3m-1)(-36)$	M1	Correct use of discr leading to ineq in <i>m</i>
	Solving: $48m < 15$, so $m < \frac{5}{16}$	M1 A1	Solving to $m < k$ A1 for $k = \frac{5}{16}$ (o.e.)
S+ for comment	From sketch: $-\frac{5}{16} < m < \frac{5}{16}$	A1	Both [Allow M1M1M1 for
on $m > \dots$ ALT	10 10	(5)	MR of <i>l</i> for 1] Use of limiting
(f)	Tangent at $\left(\delta, \frac{\delta}{3} + \frac{12}{\delta}\right)$ goes through $(0, 1)$, gradient = $m = f'(\delta)$		case: gradient of chord = gradient of
	Leads to equation: $\frac{1}{3} - \frac{12}{\delta^2} = \frac{\frac{\delta}{3} + \frac{12}{\delta} - 1}{\delta}$	M1	tangent (= gradient of line)
	$\frac{\delta^2 - 36}{3\delta^2} = \frac{\delta^2 + 36 - 3\delta}{3\delta^2} \Rightarrow 3\delta = 72 \text{ or } \delta = 24$	M1	Solve for δ
	$m = \frac{1}{3} - \frac{12}{\delta^2} = \frac{5}{16}$ etc		Then as above
	$3 \delta^2 16$	(22)	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email <u>publication.orders@edexcel.com</u>
Order Code UA036372 Summer 2013

For more information on Edexcel qualifications, please visit our website $\underline{www.edexcel.com}$

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE $\,$

